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Abstract In the equilibrium statistical mechanics of classical Coulomb fluids, the long-
range tail of the Coulomb potential gives rise to the Stillinger–Lovett sum rules for the
charge correlation functions. For the jellium model of mobile particles of charge q im-
mersed in a neutralizing background, the Stillinger–Lovett sum rules give the charge and
second moment of the screening cloud around a particle of the jellium. In this paper, we
generalize these sum rules to the screening cloud induced around a pointlike guest charge
Zq immersed in the bulk interior of the 2D jellium with the coupling constant � = βq2 (β is
the inverse temperature), in the whole region of the thermodynamic stability of the guest
charge amplitude Z > −2/�. The derivation is based on a mapping technique of the 2D
jellium at the coupling � = (even positive integer) onto a discrete 1D anticommuting-field
theory; we assume that the final results remain valid for all real values of � corresponding
to the fluid regime. The generalized sum rules reproduce for arbitrary coupling � the stan-
dard Z = 1 and the trivial Z = 0 results. They are also checked in the Debye–Hückel limit
� → 0 and at the free-fermion point � = 2. The generalized second-moment sum rule pro-
vides some exact information about possible sign oscillations of the induced charge density
in space.

Keywords Coulomb systems · Jellium · Logarithmic interaction · Screening · Sum rules

1 Introduction

The present paper deals with the equilibrium statistical mechanics of a classical (i.e. non-
quantum) jellium, sometimes called the one-component plasma, formulated in two spatial
dimensions (2D).

The jellium model consists of mobile pointlike particles j = 1, . . . ,N of charge q and
position vectors rj , confined to a continuous domain �. The particles are embedded in
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a spatially uniform neutralizing background of charge density −qn. The bulk regime of
interest corresponds to the limits N → ∞ and |�| → ∞ with the fixed particle density
n = N/|�|.

According to the laws of 2D electrostatics, the particles can be thought of as infinitely
long charged lines in the 3D space which are perpendicular to the confining 2D surface �.
Thus, the electrostatic potential φ at a point r ∈ �, induced by a unit charge at the origin 0,
is given by the 2D Poisson equation

�φ(r) = −2πδ(r). (1.1)

For an infinite plane � = R2, the solution of this equation, subject to the boundary condition
∇φ(r) → 0 as |r| → ∞, reads

φ(r) = − ln

(
r

r0

)
, (1.2)

where r ≡ |r| and the free length constant r0 will be set for simplicity to unity. In the 2D
Fourier space defined by

f (r) =
∫

d2k

2π
f̂ (k) exp(ik · r), (1.3)

f̂ (k) =
∫

d2r

2π
f (r) exp(−ik · r)

=
∞∑

j=0

(−1)j

(j !)2

(
k2

4

)j 1

2π

∫
d2r r2j f (r), (1.4)

the Coulomb potential (1.2) exhibits the form

φ̂(k) = 1

k2
(1.5)

with the characteristic singularity at k = 0. This maintain many generic properties of “real”
3D Coulomb fluids with the interaction potential φ(r) = 1/r , r ∈ R3.

Because of the presence of the rigid background, the equilibrium statistics of the jellium
is usually studied in the canonical ensemble under the condition of the overall charge neu-
trality. The 2D statistics depends on the coupling constant � = βq2 with β = 1/(kBT ) being
the inverse temperature; the particle density n only scales appropriately the distance. Let the
symbol 〈· · ·〉β denotes the canonical averaging. At the one-particle level, one introduces the
average number density of particles

n(r) =
〈∑

j

δ(r − rj )

〉
β

. (1.6)

At the two-particle level, one introduces the two-body density

n(2)(r, r′) =
〈∑

j 
=k

δ(r − rj )δ(r′ − rk)

〉
β

. (1.7)

It is also useful to consider the pair correlation function

h(r, r′) = n(2)(r, r′)
n(r)n(r′)

− 1, (1.8)
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which tends to 0 at asymptotically large distances |r − r′| → ∞.
The bulk jellium is in a fluid state for high enough temperatures, i.e. the density of

particles is homogeneous, n(r) = n, and the two-body density is translation invariant,
n(2)(r, r′) = n(2)(|r−r′|). There were indications from numerical simulations [1] that around
� ∼ 142 the fluid system undergoes a phase transition to a 2D Wigner crystal; a recent
study [2], based on Monte-Carlo simulations, cautions this conclusion. In any case, in what
follows we shall restrict ourselves to the fluid jellium.

Through a simple scaling argument, the exact equation of state for the pressure P ,
βP = n[1 − (�/4)], has been known for long time [3]. The jellium is completely solvable,
like any Coulomb system, in the high-temperature Debye–Hückel (DH) limit � → 0 [4],
characterized by a monotonic exponential decay of the pair correlation function h(r) at as-
ymptotically large distances r → ∞. The systematic �-expansion of statistical quantities
around the DH limit can be done within a bond-renormalized Mayer diagrammatic expan-
sion [5]. The 2D jellium is mappable onto a system of free fermions at the special coupling
� = 2 [6]. This exactly solvable point is characterized by a pure Gaussian decay of the pair
correlation. The evaluation of the leading term of the (� − 2) expansion for h(r) indicates
the change from the monotonic to oscillatory behavior just at � = 2 [6].

The long-range tail of the Coulomb potential, which is reflected in the singular behavior
of the Fourier component (1.5) around k = 0, causes screening and thus gives rise to exact
constraints (sum rules) for the charge correlation functions (see review [7]), like the zeroth-
and second-moment Stillinger–Lovett conditions [8, 9]. Their derivation can be based on the
exploration of the Ornstein–Zernicke (OZ) equation

h(r, r′) = c(r, r′) +
∫

d2r ′′ c(r, r′′)n(r′′)h(r′′, r′) (1.9)

relating the pair correlation function h with the direct correlation function c. Within the dia-
grammatic scheme of the renormalized Mayer expansion [5], the direct correlation function
of the bulk jellium is expressible as

c(r) = −βq2φ(r) + creg(r), (1.10)

where creg denotes contributions of all completely renormalized Mayer diagrams. Since
these contributions are short-ranged, the Fourier transform of creg has an analytic k-expansion
around k = 0. Consequently, as k → 0,

ĉ(k) = − �

k2
+ O(1). (1.11)

Writing the OZ equation (1.9) in the 2D Fourier space

ĥ(k) = ĉ(k) + 2πnĉ(k)ĥ(k), (1.12)

the small-k expansion of ĉ (1.11) fixes the zeroth and second moments of h(r). In terms of
the two-body density, these sum rules read

∫
d2r [n(2)(r,0) − n2] = −n, (1.13)

∫
d2r |r|2[n(2)(r,0) − n2] = − 2

π�
. (1.14)
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The two rules express the perfect screening property of the charge cloud around a particle
of the jellium and an infinitesimal guest charge, respectively. It is clear from the derivation
procedure that the consideration of a short-ranged, e.g. hard core, potential in addition to the
Coulomb potential does not alter the results (1.13) and (1.14). We add for completeness that
for the 2D jellium also the fourth-moment condition [10] (related to the availability of the
exact equation of state) and the sixth-moment condition [11] (derived within a classification
of renormalized Mayer diagrams) are known.

In this paper, we study a typical situation in the theory of colloidal mixtures [12, 13]: a
“guest” particle with charge Zq is immersed into the bulk interior of a Coulomb system, in
our case the jellium. Possible values of the parameter Z are restricted as follows. When q is
the elementary charge e of an electron, Z is the valence of an atom and as such it should be an
integer. In general, the jellium can be composed of multivalent charges (q = ±2e,±3e, . . .)

and in that case Z can take rational values. In the considered case of the pointlike guest
charge and two spatial dimensions, the value of Z is bounded from below by a collapse
phenomenon. Namely, the Boltzmann factor of the guest charge Zq with a jellium charge q

at distance r , r�Z , is integrable at small 2D distances r if and only if

Z > − 2

�
. (1.15)

This is the region of the thermodynamic stability for the jellium system plus the guest
charge Zq .

The aim of the present paper is to extend the Stillinger–Lovett sum rules (1.13) and (1.14)
to the presence of the guest charge Zq in the bulk jellium. For this purpose, we introduce
“conditional” densities: let n(r|Zq,0) be the average density of jellium particles at point r
induced by a pointlike charge Zq placed at the origin 0. The corresponding induced charge
density will be denoted by ρ(r|Zq,0) = q[n(r|Zq,0)−n]. Evidently, if Z = 1, i.e. the fixed
particle has the same charge as the species forming the jellium, it holds

n(2)(r,0) = n(r|q,0)n(0). (1.16)

The sum rules (1.13) and (1.14) can be thus rewritten in the form
∫

d2r ρ(r|q,0) = −q, (1.17)

∫
d2r |r|2ρ(r|q,0) = − 2q

π�n
. (1.18)

The zeroth-moment condition (1.17) reflects a trivial fact that the charge q is screened by a
cloud of the opposite charge −q . The condition (1.18) tells us that the second-moment of
this charge cloud has a prescribed value. Our task is to generalize these exact constraints
for the conditional charge density ρ(r|Zq,0), where the guest-charge parameter Z lies in
the stability region (1.15). We notice that there exists one trivial case Z = 0, for which the
obvious equality n(r|0,0) = n implies that all charge moments vanish,

∫
d2r |r|2j ρ(r|0,0) = 0 for j = 0,1,2, . . . . (1.19)

The generalization of the zeroth-moment relation (1.17) is straightforward:
∫

d2r ρ(r|Zq,0) = −Zq, (1.20)
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i.e., the guest charge Zq immersed in the jellium is screened by an excess cloud of jellium
particles carrying exactly the opposite charge −Zq .

The generalization of the second-moment relation (1.18) is nontrivial. We would like to
emphasize that the derivation of the sum rule (1.14), or its equivalent (1.18), using the OZ
equation was based on the translation-invariance property of the bulk jellium. The introduc-
tion of the guest charge Zq with Z 
= 1 breaks the translation symmetry of the jellium and
one has therefore to apply other more sophisticated approaches. Here, we use a mapping
technique of the 2D jellium with the coupling constant � = (even positive integer) onto
a discrete 1D anticommuting-field (fermion) theory, introduced in [14] and developed fur-
ther in [15–17]. The general formalism of the mapping technique is briefly recapitulated in
Sect. 2.

The present application of the fermionic mapping to the thermodynamic limit of the jel-
lium in the disc geometry, with the guest charge Zq fixed at the disc center, is the subject of
Sect. 3. Within the fermion representation, a couple of constraints for fermionic correlators
is derived by using specific transformations of anticommuting variables. Under the assump-
tion of good screening properties of the jellium system, these fermionic constraints imply
the electroneutrality sum rule (1.20) and the desired second-moment sum rule:

∫
d2 r|r|2ρ(r|Zq,0) = − 1

π�n
Zq

[(
2 − �

2

)
+ �

2
Z

]
, (1.21)

valid in the guest-charge stability region (1.15). Although this relation was obtained for the
series of discrete values of the coupling constant � = 2,4, . . . , we assume its validity for all
real values of � corresponding to the fluid regime. It is easy to verify that the formula (1.21)
is consistent for Z = 1 with the result (1.18) and for Z = 0 with (1.19). In contrast to the
zeroth-moment condition (1.20), the second-moment sum rule (1.21) provides some exact
information about possible sign oscillations of the charge cloud screening the guest particle
Zq and this topic is also discussed in Sect. 3.

The exact weak-coupling DH analysis of the studied guest-charge problem is presented
in Sect. 4, with the final result∫

d2r |r|2ρ(r|Zq,0) = − 2Zq

π�n
as � → 0. (1.22)

The crucial formula (1.21) evidently passes this test.
The exact treatment of the problem at the free fermion point � = 2, performed in Sect. 5,

leads for stable Z > −1 to the result∫
d2r |r|2ρ(r|Zq,0) = −Zq(Z + 1)

2πn
at � = 2. (1.23)

The formula (1.21) passes also this test.
Some concluding remarks are given in Sect. 6.

2 General Formalism

Let us consider the jellium consisting of N mobile particles confined to a 2D domain �;
the plain hard walls surrounding � do not produce image charges. In terms of the complex
coordinates (z, z̄), the potential energy of the particle-background system is given by

E = E0 + q
∑

j

φ(zj , z̄j ) − q2
∑
j<k

ln |zj − zk|. (2.1)
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Here, φ(z, z̄) is the one-body potential induced by the background plus perhaps some addi-
tional fixed charges and E0 is the (background–background, etc.) interaction constant which
does not influence the statistical averages over particle positions and therefore will be omit-
ted. The canonical partition function at the inverse temperature β reads

ZN = 1

N !
∫

�

N∏
j=1

[
d2zj w(zj , z̄j )

]∏
j<k

|zj − zk|�, (2.2)

where the one-body Boltzmann factor w(zj , z̄j ) = exp[−βqφ(zj , z̄j )]. The particle density
(1.6) can be obtained in the standard way

n(z, z̄) = w(z, z̄)
δ lnZN

δw(z, z̄)
. (2.3)

For the coupling constant � = 2γ (γ = 1,2, . . . an integer), it has been shown in [14]
that the partition function (2.2) can be expressed as the integral over two sets of Grassmann
variables {ξ (α)

j ,ψ
(α)
j } each with γ components (α = 1, . . . , γ ), defined on a discrete chain

of N sites j = 0,1, . . . ,N − 1 and satisfying the ordinary anticommuting algebra [18], as
follows:

ZN =
∫

DψDξ exp[S(ξ,ψ)], (2.4)

S(ξ,ψ) =
γ (N−1)∑
j,k=0

�jwjk�k. (2.5)

Here, DψDξ = ∏N−1
j=0 dψ

(γ )

j · · ·dψ
(1)
j dξ

(γ )

j · · ·dξ
(1)
j and the action S involves pair interac-

tions of “composite” operators

�j =
N−1∑

j1,...,jγ =0
(j1+···+jγ )=j

ξ
(1)
j1

· · · ξ (γ )

jγ
, �k =

N−1∑
k1,...,kγ =0

(k1+···+kγ )=k

ψ
(1)
k1

· · ·ψ(γ )

kγ
. (2.6)

The interaction strength is given by

wjk =
∫

�

d2zw(z, z̄)zj z̄k, j, k = 0,1, . . . , γ (N − 1). (2.7)

Using the notation 〈· · ·〉 = ∫
DψDξeS · · ·/ZN for an averaging over the anticommuting

variables with the action (2.5), the particle density (2.3) is expressible in the fermionic for-
mat as follows

n(z, z̄) = w(z, z̄)

γ (N−1)∑
j,k=0

〈�j�k〉zj z̄k. (2.8)

Specific constraints for the fermionic correlators 〈�j�k〉 follow from the fermionic rep-
resentation of the partition function as the results of certain transformations of anticommut-
ing variables which maintain the composite nature of the action (2.5).

Let us first rescale by a constant one of the field components, say

ξ
(1)
j → μξ

(1)
j , j = 0,1, . . . ,N − 1. (2.9)
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Jacobian of this transformation equals to μN and the fermionic action S transforms to μS.
Consequently,

ZN = μ−N

∫
DψDξ exp

(
μ

γ(N−1)∑
j,k=0

�jwjk�k

)
. (2.10)

ZN is independent of μ and so its derivative with respect to μ is equal to zero for any value
of μ. In the special case μ = 1, the equality ∂μ lnZN |μ=1 = 0 implies the constraint

γ (N−1)∑
j,k=0

wjk〈�j�k〉 = N. (2.11)

Let us now consider another linear transformation of all ξ -field components

ξ
(α)
j → λjξ

(α)
j , j = 0,1, . . . ,N − 1, α = 1, . . . , γ . (2.12)

Jacobian of this transformation equals to λγN(N−1)/2 and the fermionic action S transforms
to

∑γ (N−1)

j,k=0 λj�jwjk�k . Consequently,

ZN = λ−γN(N−1)/2
∫

DψDξ exp

(
γ (N−1)∑
j,k=0

λj�jwjk�k

)
. (2.13)

The equality ∂λ lnZN |λ=1 = 0 implies the following constraint

γ (N−1)∑
j,k=0

jwjk〈�j�k〉 = 1

2
γN(N − 1). (2.14)

The application of the transformation (2.12) to all ψ -field components leads to the comple-
mentary condition

γ (N−1)∑
j,k=0

kwjk〈�j�k〉 = 1

2
γN(N − 1). (2.15)

3 Derivation of Sum Rules

We study the jellium model confined to the domain of disc geometry � = {r, r < R}, with
the guest charge Zq fixed at the origin 0. The guest charge Zq together with the total charge
Nq of N mobile particles are compensated by the fixed background of charge density −nq

via the overall neutrality condition

Z + N = πR2n. (3.1)

The potential induced by the homogeneous background is qπnr2/2, the guest charge inter-
acts with jellium particles logarithmically −Zq ln r . The total one-body potential acting on
each particle

φ(r) = q2 πnr2

2
− Zq2 ln r (3.2)
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possesses the circular symmetry.
At the coupling � = 2γ (γ = 1,2, . . .), the one-body Boltzmann factor w(r) =

exp[−βφ(r)] reads

w(r) = r2γZ exp(−γπnr2). (3.3)

Within the fermionic representation of the jellium (2.4–2.8), the interaction matrix (2.7)
becomes diagonal

wjk = δjkwj , wj =
∫

�

d2r r2(γZ+j) exp(−γπnr2). (3.4)

The consequent diagonalization of the action (2.5) in composite operators, S =∑γ (N−1)

j=0 �jwj�j , implies that 〈�j�k〉 = δjk〈�j�j 〉 and the representation of the parti-
cle density (2.8) simplifies to

n(r|Zq,0) = e−γπnr2
γ (N−1)∑

j=0

〈�j�j 〉r2(γZ+j). (3.5)

The constraint (2.11) is expressible as

γ (N−1)∑
j=0

wj 〈�j�j 〉 = N (3.6)

and the couple of complementary conditions (2.14) and (2.15) reduces to

γ (N−1)∑
j=0

jwj 〈�j�j 〉 = 1

2
γN(N − 1). (3.7)

Using the definition of the interaction integrals (3.4), it is easy to show that the constraint
(3.6) is equivalent to the relation

∫
�

d2r n(r|Zq,0) = N, (3.8)

which reflects a trivial fact: the total number of mobile particles in the disc domain � is
equal to N . With regard to the electroneutrality condition (3.1), the relation (3.8) can be
rewritten in the form ∫

�

d2r ρ(r|Zq,0) = −Zq. (3.9)

By a simple analysis we shall argue that this condition involves in fact two sum rules, the
bulk one and the surface one. Let us divide the disc domain � onto its “bulk” part �b =
{r, r < R/2} and the “surface” part �s = {r, r = R − x with 0 ≤ x < R/2} (x denotes the
distance from the disc boundary) and rewrite (3.9) as follows

∫ R/2

0
2πr dr ρ(r|Zq,0) +

∫ R/2

0
2π(R − x)dx ρ(x|Zq,0) = −Zq. (3.10)

Let us assume that the system of charges has good screening properties, i.e. the decay of
particle correlations at large distances r is faster than any inverse power law, say exponential
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∝ exp(−κr) with κ being the inverse correlation length (like it is in the weak-coupling limit
� → 0) or even Gaussian ∝ exp[−(κr)2] (like it is at the free-fermion point � = 2). In the
R → ∞ limit, the particle density differs from the constant n only: in the bulk region close
to the disc center 0 (up to r ∼ κ−1) and in the surface region close to the x = 0 boundary
(up to x ∼ κ−1). The charge profile close to the boundary ρ(x|Zq,0) is influenced by the
screened guest charge Zq (exponentially or even Gaussianly) weakly as R → ∞. Forgetting
these small terms, one can put

ρ(x|Zq,0) ∼ ρ(x|0,0) = ρ(x) + 1

R
f1(x) + 1

R2
f2(x) + · · · , (3.11)

where the long-ranged inverse-power-law terms 1/R,1/R2, . . . are due to the nonzero cur-
vature of the disc surface and the respective coefficients f1, f2, . . . are short-ranged func-
tions of the dimensionless parameter κx. Thus, (3.10) splits in the limit R → ∞ into the
Z-dependent bulk electroneutrality condition of present interest

∫
d2r ρ(r|Zq,0) = −Zq (3.12)

and a series of Z-independent surface conditions
∫ ∞

0
2π(R − x)dx ρ(x|0,0) = 0, (3.13)

the lowest one of which takes the form of the surface electroneutrality
∫ ∞

0
dx ρ(x) = 0. (3.14)

To make use of the constraint (3.7), we first differentiate both sides of the density repre-
sentation (3.5) with respect to r , then multiply the result by r and finally integrate over the
disc domain, to obtain

∫
�

d2r r
∂

∂r
n(r|Zq,0)

= 2γZN − 2γπn

∫
�

d2r r2n(r|Zq,0) + 2
γ (N−1)∑

j=0

jwj 〈�j�j 〉. (3.15)

The lhs of this relation can be integrated by parts, the summation on the rhs is given by the
constraint of interest (3.7). After simple algebra, the relation (3.15) is transformed to

−2πγn

∫
�

d2r r2ρ(r|Zq,0)

= (2 − γ )Zq + γZ2q + 2πR2

[
ρ(R|Zq,0) + γ

2
qn

]
. (3.16)

Like in the previous analysis of (3.9), we divide the disc domain � onto its bulk and surface
parts to express the integral in (3.16) as follows:

∫ R/2

0
2πr3 dr ρ(r|Zq,0) +

∫ R/2

0
2π(R − x)3 dx ρ(x|Zq,0). (3.17)



1424 J Stat Phys (2007) 128: 1415–1428

Under the assumption of good screening properties of the jellium, the bulk and surface re-
gions are coupled weakly in the R → ∞ limit and one can consider once more the expansion
(3.11) for the boundary charge density. In this way, one gets from (3.16) the Z-dependent
bulk condition ∫

d2r r2ρ(r|Zq,0) = − 1

2πγn
Zq[(2 − γ ) + γZ], (3.18)

which is equivalent after the substitution γ = �/2 to the one of primary importance (1.21),
and a series of Z-independent surface conditions

−2πγn

∫ ∞

0
2π(R − x)3 dx ρ(x|0,0) = 2πR2

[
ρ(x = 0|0,0) + γ

2
qn

]
. (3.19)

The lowest-order surface condition can be obtained by summing (3.13), multiplied by
2πγnR2, with (3.19). The final result reads

ρ(x = 0) = −γ

2
qn + 4πγn

∫ ∞

0
dx xρ(x). (3.20)

This relation is known as the contact theorem [19–21]. Although all relations were derived
for γ = �/2 a positive integer, it is reasonable to extend their validity to all values of �

corresponding to the fluid regime.
As was mentioned in the introduction, the generalized second-moment sum rule (1.21) is

consistent with the available results (1.18) for Z = 1 and (1.19) for the trivial case Z = 0. In
the next two sections, we test this sum rule also in the weak-coupling � → 0 limit (Sect. 4)
and at the free-fermion point � = 2 (Sect. 5).

In contrast to the zeroth-moment electroneutrality condition (3.12), the generalized
second-moment sum rule (3.18), or equivalently (1.21), provides an exact information about
possible sign oscillations of the induced charge density ρ(r|Zq,0) in space. If Z > 0, the
guest particle and jellium charges repeal each other and therefore ρ(r|Zq,0) ∼ −qn as
r → 0. Provided that ρ(r|Zq,0) does not change the sign when changing r from 0 to ∞
(where ρ vanishes), its second moment has the sign opposite to Zq . Similarly, if Z < 0,
there is an attraction between the guest particle and jellium charges, so that ρ(r|Zq,0) goes
to infinity as r → 0. Consequently, when ρ(r|Zq,0) does not change the sign when going
from r = 0 to r → ∞, its second moment has again the sign opposite to Zq . The suffi-
cient condition for sign oscillations of the charge density ρ(r|Zq,0) in space is that its
second-moment has the sign of Zq . In view of the result (1.21), the sufficient condition for
oscillations is that the guest-charge parameter Z lies in the interval

− 2

�
< Z < 1 − 4

�
, (3.21)

where the lower bound, see (1.15), ensures the thermodynamic stability of the pointlike guest
charge Zq . The inequalities (3.21) have no solution for � ≤ 2. For � > 4, there exists also
an interval of positive values of Z for which the induced charge density certainly exhibits
sign oscillations.

4 Weak-Coupling Limit

The effective potential φ at distance r from the guest charge Zq , placed at the origin 0
and surrounded by mobile q-charges of the average density n(r|Zq,0) plus the neutralizing
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background of charge density −qn, is given by the 2D Poisson equation

�φ(r) = −2πq{Zδ(r) + [n(r|Zq,0) − n]}. (4.1)

The weak-coupling (high-temperature) region � → 0 is described rigorously by the
Debye–Hückel theory [4, 22]. Within this mean-field approach, the average particle density
at a given point is approximated by replacing the potential of mean force by the average elec-
trostatic potential at that point, n(r|Zq,0) = n exp[−βqφ(r)]. The mean-field Boltzmann
factor can be linearized at high temperatures, exp[−βqφ(r)] ∼ 1 − βqφ(r). The Poisson
equation (4.1) then reads

(� − κ2)φ(r) = −2πZqδ(r), (4.2)

where κ = √
2π�n is the inverse Debye length.

Due to the circular symmetry of the problem, � = ∂2
r + (1/r)∂r . Equation (4.2), subject

to the condition of regularity at r → ∞, thus implies

φ(r) = ZqK0(κr), (4.3)

where K0 is a modified Bessel function [23].
The induced charge density around the guest charge Zq is obtained in the form

ρ(r|Zq,0) = −Zqn�K0(κr). (4.4)

Since the stability lower bound (1.15) is Z > −∞ in the limit � → 0, this result applies to
all real values of Z. The charge density (4.4) is always a monotonic function of the distance
r which keeps its plus (Zq < 0) or minus (Zq > 0) sign in the whole interval of r ∈ (0,∞).
Its moments Ij = ∫ ∞

0 2πr dr r2j ρ(r|Zq,0) (j = 0,1, . . .) are given by

Ij = −Zqκ2
∫ ∞

0
dr r2j+1K0(κr) = −Zq

(
2

κ

)2j

[�(1 + j)]2, (4.5)

where �(x) denotes the Gamma function. For j = 0, the electroneutrality condition (1.20)
takes place. For j = 1, one arrives at the second-moment formula (1.22) which is in full
agreement with the general result (1.21) taken in the weak-coupling limit � → 0.

5 The Free-Fermion Point

The fermionic representation of the 2D jellium simplifies substantially for the coupling con-
stant � = 2 (γ = 1), because the composite variables (2.6) become the ordinary anticom-
muting ones. Having the fermionic action of the form S = ∑N−1

j=0 ξjwjψj it is easy to show
that

ZN =
N−1∏
j=0

wj , (5.1)

〈ξjψj 〉 = 1

wj

, j = 0,1, . . . ,N − 1. (5.2)
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In the limit of the infinite disc radius R → ∞, the interaction strength (3.4) at γ = 1 is given
by

wj = 1

n

1

(πn)Z+j
�(Z + j + 1). (5.3)

For an infinite number of jellium particles N → ∞, the particle density (3.5) induced by the
guest charge Zq reads

n(r|Zq,0)

n
= fZ(πnr2), fZ(t) = e−t

∞∑
j=0

tZ+j

�(Z + j + 1)
. (5.4)

The same formula was derived previously by Jancovici [24]. The induced density (5.4) is
well defined for Z > −1, and this is indeed the range of the guest-charge stability (1.15) for
the coupling constant � = 2.

Let us first treat the region of Z > 0 (q > 0 will be considered for simplicity). We shall
need the incomplete Gamma function which is defined as follows [23]:

�(Z, t) =
∫ ∞

t

ds sZ−1e−s = �(Z) −
∫ t

0
ds sZ−1e−s , Z > 0. (5.5)

It can be readily shown by applying a series of integrations by parts that

�(Z, t) = �(Z) − �(Z)e−t

∞∑
j=0

tZ+j

�(Z + j + 1)
. (5.6)

The function fZ(t), defined in (5.4), is therefore expressible as

fZ(t) = 1 − �(Z, t)

�(Z)
(5.7)

and the induced charge density reads

ρ(r|Zq,0) = −qn
�(Z,πnr2)

�(Z)
, Z > 0. (5.8)

Since ∂t�(Z, t) = −tZ−1e−t , the derivative ∂rρ(r|Zq,0) is positive for any value of r . Con-
sequently, the induced charge density is the monotonically increasing function of r , going
from −qn at r = 0 to 0 at r → ∞. The moments of the charge cloud around the guest
particle Ij = ∫ ∞

0 2πr dr r2j ρ(r|Zq,0) (j = 0,1, . . .) are given by

Ij = −2πqn

∫ ∞

0
dr r2j+1 �(Z,πnr2)

�(Z)
= − q

(j + 1)(πn)j

�(Z + j + 1)

�(Z)
, (5.9)

where we have applied an integration by parts. For j = 0, one recovers the electroneutrality
sum rule (1.20). For j = 1, one gets the result (1.23) which is in full agreement with the
general result (1.21) taken at � = 2.

As concerns the stability region of negative Z-values −1 < Z < 0, we first write down a
recursion relation for fZ(t) following from the definition (5.4):

fZ(t) = e−t tZ

�(Z + 1)
+ fZ+1(t). (5.10)
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Thus,

ρ(r|Zq,0) = qn

[
e−πnr2 (πnr2)Z

�(Z + 1)
− �(Z + 1,πnr2)

�(Z + 1)

]
, Z > −1. (5.11)

The induced charge density is now the monotonically decreasing function of r , going from
∞ at r = 0 to 0 at r → ∞. It is easy to verify that the formula for its even moments coincides
with the previous one (5.9). This fact permits one to extend the validity of the zeroth-moment
(1.20) and second-moment (1.23) sum rules to the region of negative Z-values −1 < Z < 0.

6 Conclusion

In this paper, we have generalized the standard zeroth- and second-moment Stillinger–Lovett
sum rules for the charge correlation functions to the presence of a guest charge immersed
in the bulk interior of the 2D jellium. The derivation procedure was based on the fermionic
technique which is associated specifically with the 2D jellium model.

The one-component jellium of mobile q-charges with a guest charge Zq may be seen
as the limit of a “two-component” jellium with two types of charges q and Zq , where the
number density of charges Zq tends to zero. Such model has been studied in [24] within
the theory of solutions of McMillan and Mayer; the density of particles of charge Zq was
considered to be small, and used as an expansion parameter for the free energy, the pair
distribution functions, etc., of the mixture. There exists a second-moment partial sum rule
for each component of the two-component jellium, see formula (5.4) in [25]. However, these
sum rules hold only for specific densities of the two components which globally minimize
the free energy; as an evidence of this fact, the sum rule contains the derivatives of the
particle densities with respect to the background charge. This is why we were not able to
accomplish in this way an alternative proof of the new sum rules for one guest charge in the
jellium.

It is an open question whether the generalization of the standard sum rules can be ac-
complished also in higher dimensions or for many-component Coulomb fluids. The present
results might inspire specialists to establish some new phenomenological arguments which
go beyond the standard ones.
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